

Integrated model for clinical response and dropout in depression trials: a state-space approach

Alberto Russu^{1,2}

Eleonora Marostica² Andrew C. Hooker³ Roberto Gomeni⁴ Giuseppe De Nicolao² Italo Poggesi⁴ Stefano Zamuner⁴

¹ Laboratory of Biomedical Informatics (BMI), University of Pavia, Italy
² Department of Computer Engineering and Systems Science, University of Pavia, Italy
³ Department of Pharmaceutical Biosciences, Uppsala University, Sweden
⁴ Clinical Pharmacology / Modelling & Simulation, GlaxoSmithKline, Italy

Population Approach Group Europe 19th Meeting

Example of a depression dataset

Dropout events

Flex-design: possible dose escalation at a given week

- 1. Response modelling:
 - How to formulate a suitable mathematical model for depression data?
- 2. *Flex-design*, i.e. possible dose escalations during the study:
 - How to handle them?
- 3. Dropout modelling:
 - How to handle dropout events?
 - Is there an interaction between the response model and the dropout model?

- 1. Modelling the HAMD score: a state-space approach
- 2. Modelling dropout
- 3. Results
- 4. Conclusion

1. Modelling the HAMD score: a state-space approach

- 2. Modelling dropout
- 3. Results
- 4. Conclusion

Algebraic models

- Inverse Bateman: $y(t) = A B(e^{-t/t_{onset}} e^{-t/t_{recovery}})$
- Polynomial function: $y(t) = a + bt + ct^2$
- Mixed Weibull-linear function: $y(t) = Ae^{-(t/t_d)^b} + s_{rec}t$

However...

- Empirical models: just a description of data
- How to handle the *flex-design*?

State-space concept

x(*t*): vector of variables summarising the patient's health state at time *t*

Fundamental property of state-space models¹

Given the state $x(t^*)$ and an evolution law *f* for $t > t^*$, future states are completely determined:

x(t+dt) = x(t) + f(x(t))dt

Also, x(t) is a continuous function of t

 $\dot{x}(t) = f(x(t))$

¹ Kalman, R.E., Falb, P.L., and Arbib, M.A. (1969), Topics in Mathematical System Theory, McGraw-Hill, New York 7

Example 1

x(t) = HAMD(t)

Applies when the score at time *t* summarises all past history and is sufficient to determine future response to treatment

One state variable: 1st order model

Example 2

2 patients A and B, with same HAMD at time *t**, respond differently to same therapy starting at *t** because A was ameliorating and B was worsening: the trend matters

2nd order model (two state variables):

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} HAMD(t) \\ \frac{d}{dt} HAMD(t) \end{bmatrix}$$

Latent variable that accounts for trend at time *t*

More general models are possible

One of the advantages of state-space approach

Modelling change of dose (*flex-design*)

How to concatenate the two models?

 t_{flex}

Use $\dot{x}(t) = f_1(x(t))$ $t \le t_{flex}$ to compute $\overline{x} = x(t_{flex})$ Use $\dot{x}(t) = f_2(x(t))$ $t > t_{flex}$ with initial condition

 $x(t_{flex}) = \overline{x}$

Application: mixed Weibull-linear model¹

State-space formulation

Solution

¹ Gomeni R. et al., *European Journal of Pharmaceutical Sciences*, 36, 4–10, 2009

Handling the *flex-design*: *flexible* parameters

Discontinuity of parameters, but continuity of $x_1(t)$ and $x_2(t)$

- 1. Modelling the HAMD score: a state-space approach
- 2. Modelling dropout
- 3. Results
- 4. Conclusion

Modelling dropout

• *T* : time-to-dropout (interval or right censored)

• Hazard function:
$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid t \le T)}{\Delta t}$$

- Cumulative hazard: $H(t) = \int_{0}^{t} h(u) du$
- Survival function: $S(t) = e^{-H(t)}$

Completely Random Dropout (CRD)¹

 $h(t) = \alpha \lambda (\lambda t)^{\alpha - 1}$

Random Dropout (RD)¹

$$h(t) = \alpha \lambda (\lambda t)^{\alpha - 1} \cdot e^{\theta f(z)}$$

Informative Dropout (ID)¹

$$h(t) = \alpha \lambda (\lambda t)^{\alpha - 1} \cdot e^{\theta f(y)}$$

- 1. Modelling the HAMD score: a state-space approach
- 2. Modelling dropout
- 3. Results
- 4. Conclusion

Results

GlaxoSmithKline study SND103285:

- Phase II,
- 10-week,
- Randomized,
- Double-blind,
- Flexible-dose (decision at week 4)

depression trial comparing GSK372475 (1.5 and 2.0 mg/day) and placebo

Software implementation:

- R 2.10.0: pre-processing and graphical output
- WinBUGS + WBDiff: Markov Chain MonteCarlo estimation

Results: effect of dose escalation (placebo)

bmf

Results: effect of dose escalation (GSK372475)

Results: HAMD goodness-of-fit

Results: Cox-Snell residuals and DIC

- HAMD time course:
 - In presence of flexible dosing scheme, response is better described by the flexible model (switch t'_d to t''_d and s'_{rec} to s''_{rec})
- Placebo arm:
 - RD and ID are more adequate than CRD (Cox-Snell residuals)
 - \Rightarrow Dropout is well explained by the HAMD course
- GSK372475 arm:
 - ID fits best (dropout DIC)
 - Residuals suggest misspecification of the hazard model
 - Could be solved by integrating safety/tolerability (see also Lalovic *et al.*, PAGE 16, 2007)

- 1. Modelling the HAMD score: a state-space approach
- 2. Modelling dropout
- 3. Results
- 4. Conclusion

1. State-space approach: rigorous management of discontinuities in the dosing regimen

2. Straightforward extension to more complex problems and/or further states (e.g. *dx/dt*, HAMD subscales, ...)

3. Covariates for the dropout model can be searched for in the state space

Giuseppe De Nicolao (PhD supervisor)

Thank you for your attention

Integrated model for clinical response and dropout in depression trials: a state-space approach

Alberto Russu^{1,2}

Eleonora Marostica² Andrew C. Hooker³ Roberto Gomeni⁴ Giuseppe De Nicolao² Italo Poggesi⁴ Stefano Zamuner⁴

¹ Laboratory of Biomedical Informatics (BMI), University of Pavia, Italy
² Department of Computer Engineering and Systems Science, University of Pavia, Italy
³ Department of Pharmaceutical Biosciences, Uppsala University, Sweden
⁴ Clinical Pharmacology / Modelling & Simulation, GlaxoSmithKline, Italy

Population Approach Group Europe 19th Meeting

VPCs were not shown...

<u>Answer</u>

To perform a correct VPC, the decision on dose change must be also simulated

All factors affecting this decision should be modelled (future work)