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Motivation

1. Response modelling:

� How to formulate a suitable mathematical model for 

depression data?

2. Flex-design, i.e. possible dose escalations during the study:

� How to handle them?

3. Dropout modelling:

� How to handle dropout events?

� Is there an interaction between the response model and the 
dropout model?
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Outline 

1. Modelling the HAMD score: a state-space approach

2. Modelling dropout

3. Results

4. Conclusion
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Modelling HAMD: a state-space approach

Algebraic models

� Inverse Bateman:

� Polynomial function:

� Mixed Weibull-linear function:

� …

However...

� Empirical models: just a description of data

� How to handle the flex-design?
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Modelling HAMD: a state-space approach

State-space concept

x(t): vector of variables

summarising the patient’s health state at time t

dttxftxdttx ))(()()( +=+

))(()( txftx =&

Also, x(t) is a continuous function of t

Fundamental property of state-space models1

Given the state x(t*) and an evolution law f for t > t*,

future states are completely determined:

1 Kalman, R.E., Falb, P.L., and Arbib, M.A. (1969), Topics in Mathematical System Theory, McGraw-Hill, New York
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Modelling HAMD: a state-space approach

Example 1

x(t) = HAMD(t)

Applies when the score at time t summarises all past history

and is sufficient to determine future response to treatment

One state variable: 1st order model 
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Modelling HAMD: a state-space approach

Example 2

2 patients A and B, with same HAMD at time t*,

respond differently to same therapy starting at t*

because A was ameliorating and B was worsening:

the trend matters

2nd order model (two state variables):
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More general models are possible
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Modelling HAMD: a state-space approach

One of the advantages of state-space approach

Dose 1 Dose 2

Response model 1 Response model 2
t

tflex

How to concatenate the two models?
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Modelling change of dose (flex-design)
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Modelling HAMD: a state-space approach

SolutionState-space formulation

Application: mixed Weibull-linear model1

1 Gomeni R. et al., European Journal of Pharmaceutical Sciences, 36, 4–10, 2009

srec: rate of relapse

td: improvement time constant
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Handling the flex-design: flexible parameters
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Modelling HAMD: a state-space approach

A

0 t
tflex

t'd

s'rec

t''d

s''rec

x2(t)

x1(t)



13

Outline 

1. Modelling the HAMD score: a state-space approach

2. Modelling dropout

3. Results

4. Conclusion



14

Modelling dropout

� T : time-to-dropout (interval or right censored)

� Hazard function:

� Cumulative hazard: 

� Survival function:
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Completely Random Dropout (CRD)1

Modelling dropout
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Informative Dropout (ID)1

1 Hu C. & Sale M., Journal of Pharmacokinetics and Pharmacodynamics, 30, 83–103, 2003
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Results

GlaxoSmithKline study SND103285:

� Phase II,

� 10-week,

� Randomized,

� Double-blind,

� Flexible-dose (decision at week 4)

depression trial comparing GSK372475 (1.5 and 2.0 mg/day) 

and placebo

Software implementation:

� R 2.10.0: pre-processing and graphical output

� WinBUGS + WBDiff: Markov Chain MonteCarlo estimation



18

Results: effect of dose escalation (placebo)

DIC: 4990.640 (no flex) vs 4856.200 (flex) 

Rigid td and srec Flexible td and srec Rigid td and srec Flexible td and srec

Subject 1 Subject 2

Subject 3 Subject 4
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Results: effect of dose escalation (GSK372475)

DIC: 4711.810 (no flex) vs 4587.440 (flex) 

Rigid td and srec Flexible td and srec Rigid td and srec Flexible td and srec

Subject 1

Subject 2

Subject 3 Subject 4
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Results: HAMD goodness-of-fit

Observations
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modified Cox-Snell residuals
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Results: Cox-Snell residuals and DIC

DIC: 263.910 DIC: 263.910 DIC: 253.141
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Results: wrap-up

� HAMD time course:

� In presence of flexible dosing scheme, response is better 
described by the flexible model (switch t'd to t''d and s'rec to s''rec)

� Placebo arm:

� RD and ID are more adequate than CRD (Cox-Snell residuals)

� ⇒ Dropout is well explained by the HAMD course

� GSK372475 arm:

� ID fits best (dropout DIC)

� Residuals suggest misspecification of the hazard model

� Could be solved by integrating safety/tolerability (see also 
Lalovic et al., PAGE 16, 2007)
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Conclusion

1. State-space approach: rigorous management of 

discontinuities in the dosing regimen

2. Straightforward extension to more complex problems 
and/or further states (e.g. dx/dt, HAMD subscales, ...)

3. Covariates for the dropout model can be searched for in 

the state space
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A last remark

VPCs were not shown…

…Why?

Answer

To perform a correct VPC, the decision on dose change

must be also simulated

⇓
All factors affecting this decision should be modelled

(future work)


